
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 313 (2008) 784–805

www.elsevier.com/locate/jsvi
Nonlinear frequency responses of quarter vehicle models
with amplitude-sensitive engine mounts

Jun Hwa Lee, Rajendra Singh�

Acoustics and Dynamics Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA

Received 16 August 2007; received in revised form 15 November 2007; accepted 3 December 2007

Available online 9 January 2008
Abstract

Although the amplitude dependence of engine mounts has been widely studied via experimental and analytical studies,

its effect on the vehicle system response is still unclear. Therefore, the chief goal of this paper is to develop a method that

will incorporate measured dynamic stiffness properties of the isolator and predict the resulting amplitude-dependent

nonlinear behavior of the governing system in the frequency domain. Experimental data on two hydraulic engine mount

concepts, namely the inertia track and free decoupler mounts, are incorporated to illustrate realistic amplitude dependence.

Then, nonlinear frequency responses of two quarter vehicle models, up to 50Hz, are analytically calculated using the one-

term harmonic balance method. Our analysis shows that the proposed semi-analytical scheme should be employed, instead

of ad hoc methods, when the mount parameters are amplitude-sensitive. In particular, the inclusion of inertia track mount

leads to the softening effect. A comparison with Duffing’s oscillator is made to qualitatively assess its nature. A system

with the free decoupler mount looks more like a linear time-invariant system, at least from the frequency response

perspective, due to high decoupler damping that negates the amplitude sensitivity. Finally, some numerical convergence

issues are briefly discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many practical isolators such as engine mounts, suspension bushings and the like exhibit significant
nonlinearities and their visco-elastic properties depend on the amplitude and frequency of dynamic excitation,
static load, and temperature [1–13]. It is often difficult to analytically model such devices and thus
experimental approaches must be adopted for dynamic characterization. For instance, consider the non-
resonant elastomer test, where the isolator or mount is evaluated at a given frequency o (rad/s) and peak-to-
peak (p–p) amplitude X of sinusoidal displacement excitation, under a specific static load fs (or displacement).
Isolation component suppliers routinely measure the cross-point dynamic stiffness Kðo;X Þ ¼ FT=X where FT

is the amplitude (p–p) of the force transmitted to a rigid base only at the o though super- and sub-harmonics
might be present [3,4]. These experiments on hydraulic engine mounts (example of this article) clearly exhibit
highly nonlinear characteristics as K significantly varies with X and o of sinusoidal excitation [2–5]. Mount
characteristics have, usually in the form of Kðo;X Þ, been extensively investigated, based on experimental and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Quarter vehicle models: (a) System A: engine–mount system and (b) system B: engine–mount–chassis system.
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analytical studies [2–12]. But their incorporation into vehicle system models is not well understood [7].
Researchers and practitioners have adopted a few ad hoc treatments including a lookup table scheme that
allows them to pick constant visco-elastic parameters. Further, curve fits have been used to define spectral
variations but amplitude dependence is often ignored. This paper will specifically discuss the inclusion of
Kðo;X Þ in two quarter vehicle models that are depicted in Fig. 1 and then construct nonlinear frequency
responses by using the method of harmonic balance (HBM).

2. Problem formulation

2.1. Unresolved research issues

First, one must carefully examine the definition of peak-to-peak amplitude X, in the non-resonant mount test
[13], as the isolator is always placed between two sub-systems. For instance, consider system A of Fig. 1(a) that
consists of engine mass me, hydraulic engine mount and rigid base. In this case, X can be determined only when
the displacement of engine xe is known. Essentially, X is the p–p amplitude of xe when the external excitation fe is
sinusoidal like the mount test. Conversely, when the isolator is installed between two dynamic sub-systems as in
system B of Fig. 1(b), X is not known until both engine and chassis displacements, xe and xc, are calculated.
Here, mc is the mass of chassis; kc and cc are the stiffness and damping coefficients of chassis; xc is the
displacement of chassis; and fc is the external force applied to chassis. Thus, X should be regarded as the
amplitude of relative displacement for system B, while it is the amplitude of absolute displacement for system A.

Second, examine the nature of governing equations. For the sake of illustration, the equation of motion for
system A is sometimes inadvertently written as follows:

me €xeðtÞ þ Kðo;X ÞxeðtÞ ¼ f eðtÞ. (1)
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Note that Eq. (1) is not a true ordinary differential equation since the meanings (or consequences) of o and
X are unclear. Consequently, the transformation of Kðo;X Þ from frequency to time domain is indeterminate
and could be unrealistic. However, Eq. (1) could be applied (just like the structural damping formulations [14])
when the external force f eðtÞ is harmonic, such as f eðtÞ ¼ F e cos ot. In this case, the meaning of o becomes
clear and X is related to the amplitude (zero to peak) of xeðtÞ, as X ¼ X e when both are peak-to-peak,
assuming that xeðtÞ ¼ X e cosðot� jeÞ. Further, Xe should be determined by means of an iterative technique
such as the Newton–Raphson method (our method as discussed later). Therefore, the one-term harmonic
balance (or describing function) method could be effectively employed to obtain the frequency response of a
system with amplitude-sensitive and spectrally varying parameters; this is the basis of our analysis. This
approach is consistent with steady-state elastomer tests where Kðo;X Þ data are measured only at given o
[4–9]; essentially the method of one-term harmonic balance is experimentally implemented.

Third, researchers have attempted to faithfully characterize the following nonlinearities of hydraulic engine
mounts: nonlinear chamber compliances [13,15], vacuum formation in the upper chamber during the
expansion process [4,15], nonlinear resistances of the inertia track and decoupler [13,15], and switching
mechanism of the decoupler [13,15]. Such characterizations require a series of dedicated laboratory
experiments [4,6,13]. Such experiments are often time-consuming and suitable for academic research but often
impractical for vehicle manufacturers as they may possess hundreds of nonlinear devices. Thus, one must find
a way to utilize off the shelf data for real-life devices, in the form of Kðo;X Þ, from the component suppliers.
This would lead to an efficient vehicle dynamic analysis, and yet yield information on the amplitude sensitivity
from the noise and vibration control, vehicle ride or durability perspective.

2.2. Ad hoc methods

One particular ad hoc method employs a lookup table scheme which is used to estimate a constant stiffness
(k) and a constant viscous damping (c) coefficients from the measured Kðo;X Þ data. The analyst typically
assumes that certain frequency and typical amplitude values are of interest based on particular vehicle
problems or conditions. The resulting linear time-invariant model can then be easily dealt with in both time
and frequency domains. Also, the eigenvalue problem can be posed. Despite its mathematical ease, this
approach yields amplitude-independent system responses and thus raises questions on its utility. This analysis
is indeed valid only at the frequency and the amplitude where k and c values were selected.

Yet in another ad hoc approach, Kðo;X Þ is approximated by KðoÞ by assuming a typical amplitude. The
mathematical treatment with the spectrally varying stiffness is straightforward in frequency domain, although
the corresponding time-domain formulation cannot be exactly formulated. In addition, the spectrally varying
nature of stiffness could lead to ambiguous eigensolutions of a system. However, if a causal transfer function
is to be constructed to faithfully describe KðoÞ in the Laplace domain, the time-domain formulation can be
derived by the inverse Laplace transform method. In the case of hydraulic engine mounts, this method leads to
a linear ordinary differential equation (with real time-invariant coefficients) of third or higher order. This
implies that one or more ‘‘artificial’’ degrees of freedom are introduced and complex-valued eigensolutions
can be found without any difficulty. Unlike the lookup table scheme that works at only one frequency, the
curve-fit method predicts responses over a frequency range. But, the amplitude sensitivity of the system
response cannot be found. Accordingly, a careful interpretation is required when the isolator is highly
amplitude-sensitive.

2.3. Scope and objectives

Although the amplitude dependence of mounts or isolators has been widely studied via experimental and
analytical studies [2–12], its effect on the system response is still unclear to the best of our knowledge.
Therefore, the chief goal is to develop a method that will incorporate Kðo;X Þ data of the isolator and predict
the nonlinear behavior of a system. Dynamic analysis is restricted to the frequency domain only, up to 50Hz.
Experimental data on the two hydraulic mount concepts, namely the inertia track and free decoupler mounts,
will be incorporated to illustrate realistic amplitude dependence. The range of displacement excitation
amplitude (X) is from 0.3mm (p–p) to 3.0mm (p–p) for the inertia track mount and from 1.0mm (p–p) to
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3.0mm (p–p) for the free decoupler mount. Nonlinear frequency responses of two quarter vehicle models,
systems A and B of Fig. 1, are calculated, based on the premise that only limited measurements of Kðo;X Þ are
available. The one-term harmonic balance method is employed for the semi-analytical characterization of
system A or B with a nonlinear component. Some results for system A will be given later to illustrate how the
ad hoc techniques (as discussed earlier) might fail. Although the time-domain integration schemes (such as the
Runge–Kutta method) are commonly used to validate the harmonic balance method, they are not applicable
in our case since specific nonlinear amplitude-dependent differential equations cannot be defined. Instead,
we will also compare the backbone curves of the nonlinear frequency responses with that given by
Duffing’s oscillator to qualitatively assess their nature. Furthermore, some numerical convergence issues are
briefly discussed.

3. Semi-analytical solutions for systems with inertia track mount

3.1. Quasi-linear model of inertia track mount

The fluid model of a hydraulic engine mount with inertia track and free decoupler as shown in Fig. 2 is
briefly reviewed here in order to derive a curve-fit function for the quasi-linear model. Detailed description of
the model and its experimental validation are given in Refs. [13,15]. For the fluid model of Fig. 2, kr and cr are
the stiffness and damping coefficients of the rubber part, respectively; Cu and C‘ are the (linearized) fluid
compliances of the upper (#u) and lower (#‘) chambers; qiðtÞ and qdðtÞ are the volumetric flow rates through
the inertia track (#i) and decoupler (#d); I i and Id are the inertias of fluid columns; and Ri and Rd are the
(linearized) fluid resistances. The dynamic component of driving point force f ðtÞ is expressed as follows:

f ðtÞ ¼ cr _xðtÞ þ krxðtÞ þ AppuðtÞ, (2)

where xðtÞ is the dynamic displacement, Ap is the effective rubber (piston) area and puðtÞ is the dynamic
pressure of the upper chamber.

Continuity equations for the upper and lower chambers are written as follows:

Ap _xðtÞ � qiðtÞ � qdðtÞ ¼ Cu _puðtÞ, (3)

qiðtÞ þ qdðtÞ ¼ C‘ _p‘ðtÞ. (4)
fs xt(t)=xs+x(t)
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Fig. 2. Fluid model of the hydraulic engine mount with inertia track and free decoupler.
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Momentum equations for the inertia track and decoupler are

puðtÞ � p‘ðtÞ ¼ I i _qiðtÞ þ RiqiðtÞ, (5)

puðtÞ � p‘ðtÞ ¼ Id _qdðtÞ þ RdqdðtÞ. (6)

The dynamic component of the force f T ðtÞ transmitted to the rigid base is related to f ðtÞ as follows [16,17]
since the effect of rubber mass is negligible up to 50Hz:

f T ðtÞ ¼ cr _xðtÞ þ krxðtÞ þ AppuðtÞ ¼ f ðtÞ. (7)

In the inertia track mount, the only path of the fluid flow between the upper and lower chambers is through
the track. Accordingly, the transfer function can be derived from Eqs. (2), (3), (5), (7) with qdðtÞ ¼ 0 in the
Laplace (s) domain as follows:

KðsÞ ¼
F ðsÞ

X ðsÞ
or

FT ðsÞ

X ðsÞ
¼ kr þ crsþ ku

mies2 þ cies

mies2 þ ciesþ ku

, (8)

where ku, mie, and cie are respectively defined as ku ¼ A2
p=Cu, mie ¼ A2

pI i, and cie ¼ A2
pRi.

In comparison with puðtÞ, it is further assumed that the pressure in the lower chamber is nearly the same as
the atmospheric pressure, that is, p‘ðtÞ � 0, since the lower chamber compliance C‘ is very large in practice
(rubber bellows).

Using Eq. (8), a quasi-linear model [18] could be estimated from Kðo;X Þ measurements as shown in
Fig. 3(a). This leads to a quasi-linear formulation, but amplitude-dependent stiffness as defined below:

Kðs;X Þ ¼ kr þ crsþ kuðX Þ
mies2 þ cies

mies2 þ ciesþ kuðX Þ
. (9)

Fig. 3(b) shows the dynamic transfer stiffness by the quasi-linear model of Eq. (9) with the estimated
parameters of Table 1 where ku is the upper chamber stiffness; mie and cie are the equivalent mass and damping
coefficient representing the inertia and damping effects by fluid flow through the inertia track. Although
averaged values are taken except for ku, the quasi-linear model is in an acceptable agreement with its
corresponding measurement. For more information on the estimation procedure, refer to He and Singh’s
work [18].
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Fig. 3. Dynamic stiffness spectra of the inertia track mount: (a) measurements and (b) predicted by the quasi-linear model given in Eq. (9).

Key: , X ¼ 0.3mm p–p; , X ¼ 0.5mm p–p; , X ¼ 1.0mm p–p; , X ¼ 1.5mm p–p; , X ¼ 2.0mm p–p;

, X ¼ 2.5mm p–p; , X ¼ 3.0mm p–p.
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The dependence of ku (in Nmm�1) on X (in mm p–p) could be approximated by a polynomial curve fit of
order n as

kuðX Þ ¼
Xn

i¼0

aiX
i. (10)

Fig. 4 shows the curve fits (from first- to fourth-order polynomials) to the given estimated parameters of
Table 1. Table 2 compares the associated correlation coefficients (r). Although the second-order polynomial
Table 1

Amplitude-dependent parameters of the inertia track mount

X (mm) p–p

0.3 0.5 1.0 1.5 2.0 2.5 3.0 Average

kr (Nmm�1) 528 535 534 513 494 475 468 507

cr (N sm�1) 295 282 222 198 186 172 160 216

ku (Nmm�1) 726 610 459 376 319 281 246 –

cie (N sm�1) 2056 1964 2018 1971 1921 1923 1872 1961

mie (kg) 46.3 45.6 47.0 46.5 45.9 45.9 46.3 46.2
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Fig. 4. Dependence of ku on X. Key: , estimated parameters of Table 1; , ku(X) of first-order polynomial; , ku(X) of

second-order polynomial; , ku(X) of third-order polynomial; , ku(X) of fourth-order polynomial.

Table 2

Polynomial coefficients of ku for the inertia track mount, along with r values

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

a0 688.4 809.9 888.6 947.0

a1 �166.8 �395.8 �648.4 �903.2

a2 71.0 256.9 568.9

a3 �37.5 �179.2

a4 21.3

r 0.9459 0.9930 0.9989 0.9997
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looks reasonable, we will proceed with the third-order polynomial. As discussed later, our investigation
revealed that the convergence during the iteration process was polynomial-order dependent.

3.2. Equation of motion for system A

Consider the system A as shown in Fig. 1(a), which is apparently a single-degree-of-freedom system but the
second degree of freedom is brought in by the mount dynamics. The governing equations are as follows:

me €xe þ f H ¼ f e, (11)

where f H is the internal hydraulic force generated by the engine mount.
Now define the transfer function in the Laplace domain as

F H ðsÞ

X eðsÞ
¼ Kðs;X Þ ¼ kr þ crsþ kuðX Þ

mies2 þ cies

mies2 þ ciesþ kuðX Þ
. (12)

Rewrite Eq. (12) as follows

mie
€f H þ cie

_f H þ kuðX Þf H ¼ miecr

_ _ _xe þ mðX Þ €xe þ gðX Þ _xe þ kuðX Þkrxe, (13)

where mðX Þ ¼ miekr þ crcie þmiekuðX Þ and gðX Þ ¼ krcie þ kuðX Þcr þ kuðX Þcie.
Express Eqs. (11) and (13) in a matrix form as

0 0

�miecr 0

" # _ _ _xe

_ _ _

fH

" #
þ

me 0

�mðX Þ mie

" #
€xe

€f H

" #

þ
0 0

�gðX Þ cie

" #
_xe

_f H

" #
þ

0 1

�kuðX Þkr kuðX Þ

" #
xe

f H

" #
¼

f e

0

" #
. ð14Þ

Eqs. (11)–(14) could be valid only when the external force f e is sinusoidal, that is, f e ¼ Fe0þ

Fes sin otþ Fec cos ot. Assume that xe ¼ X e0 þ X es sin otþ X ec cos ot and f H ¼ FH0 þ F Hs sin otþ

FHc cos ot, respectively. Then, express vectors

xe f H

h iT
; _xe

_f H

h iT
; €xe

€f H

h iT
;

_ _ _xe

_ _ _

fH

h iT
and f e 0

h iT
as follows:

xe

f H

" #
¼

X e0

F H0

" #
þ sin ot

X es

F Hs

" #
þ cos ot

X ec

F Hc

" #
;

_xe

_f H

" #
¼ o cos ot

X es

F Hs

" #
� o sin ot

X ec

FHc

" #
,

€xe

€f H

" #
¼ �o2 sin ot

X es

F Hs

" #
� o2 cos ot

X ec

FHc

" #
;

_ _ _xe

_ _ _

fH

" #
¼ �o3 cos ot

X es

F Hs

" #
þ o3 sin ot

X ec

F Hc

" #
,

f e

0

" #
¼

Fe0

0

" #
þ sin ot

Fes

0

" #
þ cos ot

F ec

0

" #
, ð15a2eÞ

where the superscript ‘T’ denotes the transpose.
Eq. (14) can be rewritten by substituting Eq. (15) for each vector and grouping terms into static, sine and

cosine terms as

0 1

�kuðX Þkr kuðX Þ

" #
X e0

FH0

" #
¼

Fe0

0

" #
,

o3
0 0

�miecr 0

" #
X ec

FHc

" #
� o2

me 0

�mðX Þ mie

" #
X es

FHs

" #

� o
0 0

�gðX Þ cie

" #
X ec

FHc

" #
þ

0 1

�kuðX Þkr kuðX Þ

" #
X es

FHs

" #
¼

F es

0

" #
,



ARTICLE IN PRESS
J.H. Lee, R. Singh / Journal of Sound and Vibration 313 (2008) 784–805 791
� o3
0 0

�miecr 0

" #
X es

F Hs

" #
� o2

me 0

�mðX Þ mie

" #
X ec

FHc

" #

þ o
0 0

�gðX Þ cie

" #
X es

FHs

" #
þ

0 1

�kuðX Þkr kuðX Þ

" #
X ec

F Hc

" #
¼

F ec

0

" #
. ð16a2cÞ

Arrange terms to rewrite Eq. (16) as

o3
0 0

�miecrI 0

" #
D3 0

0 D3

" #
nþ o2

meI 0

�mðX ÞI mieI

" #
D2 0

0 D2

" #
n

þ o
0 0

�gðX ÞI cieI

" #
D1 0

0 D1

" #
nþ

0 I

�kuðX ÞkrI kuðX ÞI

" #
n ¼ u, ð17Þ

where I and 0 are the identity matrix and the zero matrix of dimension 3, respectively, and the matrices D1, D2

and D3, and the vectors n and u are defined as

D1 ¼

0 0 0

0 0 �1

0 1 0

2664
3775; D2 ¼

0 0 0

0 �1 0

0 0 �1

2664
3775; D3 ¼

0 0 0

0 0 1

0 �1 0

2664
3775,

n ¼ X e0 X es X ec FH0 FHs F Hc

� �T
; u ¼ F e0 Fes F ec 0 0 0

� �T
.

Here, X ¼ X e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

es þ X 2
ec

q
. The residual formula is derived from Eq. (17) as follows:

qðn;oÞ ¼ o3
0 0

�miecrI 0

" #
D3 0

0 D3

" #
nþ o2

meI 0

�mðX ÞI mieI

" #
D2 0

0 D2

" #
n

þ o
0 0

�gðX ÞI cieI

" #
D1 0

0 D1

" #
nþ

0 I

�kuðX ÞkrI kuðX ÞI

" #
n� u. ð18Þ
3.3. Equation of motion for system B

Next, consider the simplified engine–mount–chassis system (B) as shown in Fig. 1(b). The governing
equations consist of the following expressions and Eq. (11):

mc €xc þ cc _xc þ kcxc � f H ¼ f c, (19)

F H ðsÞ

X eðsÞ � X cðsÞ
¼ Kðs;X Þ ¼ kr þ crsþ kuðX Þ

mies2 þ cies

mies2 þ ciesþ kuðX Þ
. (20)

In a similar manner, the following residual formula can be derived as

qðn;oÞ ¼ o3

0 0 0

0 0 0

miecrI �miecrI 0

2664
3775

D3 0 0

0 D3 0

0 0 D3

2664
3775n

þ o2

mcI 0 0

0 meI 0

mðX ÞI �mðX ÞI mieI

2664
3775

D2 0 0

0 D2 0

0 0 D2

2664
3775n
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þ o

ccI 0 0

0 0 0

gðX ÞI �gðX ÞI cieI

2664
3775

D1 0 0

0 D1 0

0 0 D1

2664
3775n

þ

kcI 0 �I

0 0 I

kuðX ÞkrI �kuðX ÞkrI kuðX ÞI

2664
3775n� u: ð21Þ

Here, the vectors n and u, and the relative displacement X are defined as

n ¼ X c0 X cs X cc X e0 X es X ec F H0 FHs FHc

� �T
,

u ¼ F c0 Fcs F cc F e0 Fes Fec 0 0 0
� �T

,

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX es � X csÞ

2
þ ðX ec � X ccÞ

2

q
.

3.4. Nonlinear solution technique

A Newton–Raphson based continuation strategy can be effectively employed to minimize the residuals of
Eqs. (18) and (21). Since this technique is well known [19–22], a brief review of the procedures we implemented
is given in this section. First, solve the homotopy problem, where the ‘‘first’’ solution on a branch is calculated.
For a prescribed value of o ¼ o1, the problem of bqðnÞ ¼ qðn;o1Þ ¼ 0 is iteratively solved using a Newton–
Raphson method as follows:

bq � bqðnðiÞÞ þ qbq
qn

����
nðiÞ
ðn� nðiÞÞ ¼ bqðnðiÞÞ þ qbq

qn

����
nðiÞ

DnðiÞ ¼ bqðnðiÞÞ þ bqnðn
ðiÞ
ÞDnðiÞ ¼ 0,

nðiþ1Þ ¼ nðiÞ þ DnðiÞ ¼ nðiÞ � bq�1n ðn
ðiÞ
ÞbqðnðiÞÞ, ð22a;bÞ

where nðiÞ is the ith guess.

Second, determine the tangent predictor dn=dy do=dy
h iT

satisfying Eqs. (23)–(24) where y is the arc

length (a new parameter) and m is the dimension of vector x as

0 ¼ qn
dn
dy
þ qo

do
dy

, (23)

Xm

i¼1

dxi

dy

� �2

þ
do
dy

� �2

¼ 1. (24)

The tangent predictor can be determined as the last column of the orthonormal matrix Q by using the
QR decomposition on the transpose of the augmented non-square Jacobian J ¼ ½ qn qo � [23]. Finally,
iteratively solve qðn;oÞ ¼ 0 by obtaining the initial guess with the tangent predictor and an appropriate step
length dy. Use the Newton–Raphson method again as follows where oðiÞ is the ith guess and J+ is the pseudo-
inverse of J:

q � qðnðiÞ;oðiÞÞ þ qnðn
ðiÞ;oðiÞÞðn� nðiÞÞ þ qoðn

ðiÞ;oðiÞÞðo� oðiÞÞ

¼ qðnðiÞ;oðiÞÞ þ JðnðiÞ;oðiÞÞ
DnðiÞ

DoðiÞ

" #
¼ 0,
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nðiþ1Þ

oðiþ1Þ

" #
¼

nðiÞ

oðiÞ

" #
þ

DnðiÞ

DoðiÞ

" #
¼

nðiÞ

oðiÞ

" #
� JþðnðiÞ;oðiÞÞqðnðiÞ;oðiÞÞ. (25a,b)

3.5. Nonlinear frequency responses of system A

For the sake of illustration, consider the following numerical values for the system A: me ¼ 120 kg;
Fe0 ¼ 0N and Fes ¼ 0N, that is, f e ¼ Fec cos ot ¼ Fe cos ot. Fig. 5 shows the linear frequency response
functions (with constant ku) and the nonlinear frequency responses (with ku(X) of third-order polynomial),
which are normalized with respect to the excitation amplitude. Implication of a constant ku means that the
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Fig. 5. Linear frequency response functions and normalized nonlinear frequency responses for system A with inertia track mount. (a)

Magnitude spectra of linear frequency response functions. (b) Phase spectra of linear frequency response functions. Key: , ku at

X ¼ 0.5mm p–p; , ku at X ¼ 1.0mm p–p; , ku at X ¼ 1.5mm p–p; , ku at X ¼ 2.0mm p–p; , ku at

X ¼ 2.5mm p–p. (c) Magnitudes of normalized nonlinear frequency responses with ku(X) of third-order polynomial. (d) Phases of

normalized nonlinear frequency responses with ku(X) of third-order polynomial. Key: , Xmax ¼ 0.5mm p–p; ,

Xmax ¼ 1.0mm p–p; , Xmax ¼ 1.5mm p–p; , Xmax ¼ 2.0mm p–p; , Xmax ¼ 2.5mm p–p.
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spectrally varying stiffness K(o) is employed in the system equation, instead of K(o, X). Comparison shows
that the frequency responses at the second resonance are quite different, though they are nearly identical at the
first resonance. Accordingly, the frequency response up to the first resonance regime can be accurately
predicted by the linear model with K(o) when the magnitude of response is known a priori to some extent.
However, the difference between two formulations around the second resonance regime illustrates why the
nonlinear scheme with K(o, X) should be introduced. Observe the softening effect in Fig. 5(c), as expected
from the dependence of ku on X as shown in Fig. 4.

Fig. 6 compares the normalized nonlinear and linear frequency responses by using two ad hoc methods in
order to illustrate their limitations. Constant stiffness k and viscous damping coefficient c values
corresponding to the Kelvin–Voigt model (a spring in parallel with a viscous damper) [24] were selected
from Kðo;X Þ data at X � X emax at a frequency where a peak of the normalized nonlinear frequency response
was evident. The spectrally varying stiffness KðoÞ was selected by taking ku as a constant at X � X emax. The
frequency responses with the Kelvin–Voigt model are similar to those with Kðo;X Þ at the particular frequency
and the amplitude where k and c were selected. However, one could not find another peak with this ad hoc

method. Although the second peak is observed by employing the linear model with K(o), its frequency and
magnitude are not accurate. This example clearly shows that one should interpret results yielded by the two ad

hoc methods with extreme caution.

3.6. Nonlinear frequency responses of system B

Consider the following numerical values for system B (in addition to those selected for system A):
mc ¼ 270 kg, kc ¼ 20� 103Nm�1 and cc ¼ 1400N sm�1; Fc0 ¼ 0N, Fcs ¼ 0N, Fe0 ¼ 0N and Fes ¼ 0N, that
is, f c ¼ Fcc cosot ¼ Fc cosot (& f e ¼ 0) or f e ¼ Fec cosot ¼ Fe cosot (& f c ¼ 0). Fig. 7 shows the linear
frequency response functions with K(o) where ku is constant and Fig. 8 shows the normalized nonlinear
frequency responses with Kðo;X Þ where kuðX Þ is a third-order polynomial. The nonlinear effects can be
lucidly observed at the third resonance, while the linear and nonlinear frequency responses are nearly identical
at the first mode. Comparison of Fig. 8(b) and (c) confirms that the reciprocity is not applicable for the
nonlinear frequency responses, more specifically with the dash–dotted lines. This is expected from Fig. 9 and
the maxima of the relative displacement X are observed at different modes according to the amplitude and
physical location of the external force. The polynomial order of kuðX Þ also affects the mapping of maxima in
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terms of their magnitudes and frequencies. For instance, the peak value (Xmax ¼ 1.5mm p–p; fc ¼ 0 and
f e ¼ Fe cos ot) is located at the first mode for the second-order polynomial of X (the dash–dotted line in
Fig. 9(c)), but it shifts to the third mode with the third-order polynomial as shown in Fig. 9(b). For system A,
the maxima of the absolute displacement X are found at the first mode irrespective of input force amplitude
and stiffness polynomial order as shown in Fig. 10.

3.7. Numerical issues

Some numerical issues such as the convergence, effect of frequency sweep direction and effect of a change in
the force and motion units are briefly discussed. To begin with, we found that the convergence results were
polynomial-order dependent. We repeated nonlinear frequency response calculations with first- to fourth-
order polynomials. Non-convergent solutions were obtained with large force amplitudes, though solutions
always converged, regardless of polynomial order, as long as the force amplitude is small. To overcome the
numerical problems, we investigated the effect of frequency sweep direction and a change in the units of
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calculations (for instance, from N to 10�3N and from m to 10�3m) on the convergence. We obtained nearly
identical results when changing the frequency sweep direction or force and motion units. Finally, the
computational time for the nonlinear analysis (for system B) is about 20 s on a laptop (with the 1.66GHz dual
core processor).

4. Semi-analytical solutions for systems with free decoupler mount

4.1. Quasi-linear model of free decoupler mount

Consider Eqs. (2)–(7) of the fluid model again for free decoupler mount. The transfer function can be
derived as follows using Eqs. (2), (3), (5)–(7) with Id ¼ 0:

KðsÞ ¼ kr þ crsþ kucde

mies2 þ cies

miecdes2 þ ðciecde þ kumieÞsþ kuðcie þ cdeÞ
. (26)

where cde is defined as cde ¼ A2
pRd .
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Since a particular resonance due to the decoupler is above 50Hz, Id is not considered. With the curve-fit
function of Eq. (26), a quasi-linear model could be estimated from the stiffness measurements as shown in
Fig. 11(a). Fig. 11(b) shows the transfer stiffness predicted by the following quasi-linear model with estimated
parameters of Table 3:

Kðs;X Þ ¼ krðX Þ þ crðX Þs

þ
kuðX ÞcdeðX ÞfmieðX Þs

2 þ cieðX Þsg

mieðX ÞcdeðX Þs2 þ fcieðX ÞcdeðX Þ þ kuðX ÞmieðX Þgsþ kuðX ÞfcieðX Þ þ cdeðX Þg
, ð27Þ

where cde is the equivalent damping coefficient due to decoupler.
The stiffness spectrum predicted by the quasi-linear model is in a good agreement with its corres-

ponding measurement. Note that kuðX Þ does not dominate, unlike for inertia track mount. Therefore, cde
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could be regarded as a significant parameter, since an introduction of cde negates the dominance
of kuðX Þ. Table 3 also shows that the ratio of cde=cie is much higher than unity. Finally, the dependence
of all parameters on X is estimated by curve-fitting data by using a polynomial of order n. Some
parameters, however, assume negative values when Xo1.0mm (p–p) with third- or fourth-order
polynomial fit. Table 4 shows the associated correlation coefficients (r). Since the r value for kuðX Þ

with first-order polynomial is too small, we will proceed with the second-order polynomials for all
parameters.
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Table 3

Amplitude-dependent parameters of the free decoupler mount

X (mm) p–p

1.0 1.5 2.0 2.5 3.0

kr (Nmm�1) 403 413 400 395 383

cr (N sm�1) 757 520 387 310 224

ku (Nmm�1) 319 365 344 319 313

mie (kg) 57.6 71.4 72.7 76.0 93.9

cie (N sm�1) 1370 1582 1895 1910 1913

cde (N sm�1) 14.5� 103 11.0� 103 10.8� 103 9866 8257

cde/cie 10.6 7.0 5.7 5.2 4.3

Table 4

Correlation coefficients r for the parameters of free decoupler mount

Polynomial order kr cr ku mie cie cde

n ¼ 1 0.8330 0.9694 0.4173 0.9383 0.9042 0.9391

n ¼ 2 0.9407 0.9963 0.7780 0.9442 0.9835 0.9558
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4.2. Equations of motion for systems A and B

For system A, the governing equations consist of Eq. (11) and

F H ðsÞ

X eðsÞ
¼ Kðs;X Þ ¼

l21ðX Þs3 þ m21ðX Þs
2 þ g21ðX Þsþ k21ðX Þ

m22ðX Þs2 þ g22ðX Þsþ k22ðX Þ
, (28)

where l21ðX Þ, m21ðX Þ, m22ðX Þ, g21ðX Þ, g22ðX Þ, k21ðX Þ, and k22ðX Þ are defined as follows:

l21ðX Þ ¼ mieðX ÞcdeðX ÞcrðX Þ,

m21ðX Þ ¼ crðX ÞcieðX ÞcdeðX Þ þmieðX ÞfkrðX ÞcdeðX Þ þ kuðX ÞcrðX Þ þ kuðX ÞcdeðX Þg,

m22ðX Þ ¼ mieðX ÞcdeðX Þ,

g21ðX Þ ¼ kuðX ÞcrðX ÞfcieðX Þ þ cdeðX Þg þ cieðX ÞcdeðX ÞfkrðX Þ þ kuðX Þg

þ krðX ÞkuðX ÞmieðX Þ,

g22ðX Þ ¼ cieðX ÞcdeðX Þ þ kuðX ÞmieðX Þ,

k21ðX Þ ¼ krðX ÞkuðX ÞfcieðX Þ þ cdeðX Þg; k22ðX Þ ¼ kuðX ÞfcieðX Þ þ cdeðX Þg.

In a similar manner to Section 3.2, the residual formula is derived as

qðn;oÞ ¼ o3
0 0

�l21ðX ÞI 0

" #
D3 0

0 D3

" #
nþ o2

meI 0

�m21ðX ÞI m22ðX ÞI

" #
D2 0

0 D2

" #
n

þ o
0 0

�g21ðX ÞI g22ðX ÞI

" #
D1 0

0 D1

" #
nþ

0 I

�k21ðX ÞI k22ðX ÞI

" #
n� u. ð29Þ

For system B, the governing equations consist of Eq. (11), Eq. (19) and

F H ðsÞ

X eðsÞ � X cðsÞ
¼ Kðs;X Þ ¼

l21ðX Þs3 þ m21ðX Þs
2 þ g21ðX Þsþ k21ðX Þ

m22ðX Þs2 þ g22ðX Þsþ k22ðX Þ
. (30)
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Like Section 3.3, the following residual formula is derived as

qðn;oÞ ¼ o3

0 0 0

0 0 0

l21ðX ÞI �l21ðX ÞI 0

2664
3775

D3 0 0

0 D3 0

0 0 D3

2664
3775n

þ o2

mcI 0 0

0 meI 0

m21ðX ÞI �m21ðX ÞI m22ðX ÞI

2664
3775

D2 0 0

0 D2 0

0 0 D2

2664
3775n

þ o

ccI 0 0

0 0 0

g21ðX ÞI �g21ðX ÞI g22ðX ÞI

2664
3775

D1 0 0

0 D1 0

0 0 D1

2664
3775n

þ

kcI 0 �I

0 0 I

k21ðX ÞI �k21ðX ÞI k22ðX ÞI

2664
3775n� u: ð31Þ

4.3. Nonlinear frequency responses of systems A and B

Figs. 12(a) and 13 show the linear frequency response functions of systems A and B, respectively, by taking
all parameters as constants. Figs. 12(b) and 14 present the normalized nonlinear frequency responses of both
systems where all mount parameters are given by the second-order polynomial of X. Observe that the
nonlinear behavior with free decoupler mount differs sharply from that with inertia track mount. While the
softening nonlinearity is clearly observed with inertia track mount, it is not seen in the nonlinear response with
free decoupler mount. Furthermore, peaks of the relative displacement X for system B with free decoupler
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Fig. 12. Frequency responses for system A with free decoupler mount. (a) Linear frequency response functions with constant parameters.

Key: , X ¼ 1.0mm p–p; , X ¼ 1.5mm p–p; , X ¼ 2.0mm p–p; , X ¼ 2.5mm p–p. (b) Normalized nonlinear

frequency responses with amplitude-dependent parameters (of second-order polynomial). Key: , Xmax ¼ 1.0mm p–p; ,

Xmax ¼ 1.5mm p–p; , Xmax ¼ 2.0mm p–p; , Xmax ¼ 2.5mm p–p.
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Fig. 13. Linear frequency response functions for system B with free decoupler mount: (a) X c=F c, (b) X c=Fe, (c) X e=Fc and (d) X e=Fe.

Key: , X ¼ 1.0mm p–p; , X ¼ 1.5mm p–p; , X ¼ 2.0mm p–p; , X ¼ 2.5mm p–p.
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mount are found at the first mode irrespective of the amplitude and physical location of the external force
unlike the case of system B with inertia track mount. In fact, nonlinear frequency responses of system B with
free decoupler mount resemble responses of a linear time-invariant system. Reciprocity and lack of amplitude
sensitivity are seen for this case, probably due to high damping cde introduced by the decoupler.

5. Conclusion

Our analysis shows that the proposed scheme should be employed, instead of the ad hoc methods, when the
mount parameters exhibit amplitude sensitivity. In particular, the inclusion of inertia track mount leads to the
softening effect in both systems (A and B). Fig. 15 shows the nonlinear frequency responses and local maxima.
The associated backbone curves can be inferred from the locus of local maxima. The backbone curve for
system A (at the second mode) is a straight line with a negative slope (solid line in Fig. 16). Conversely, the left
half of a convex curve for system B (around the third mode) is also shown (dashed line) in Fig. 16.

To qualitatively assess the underlying physics, we examine two well-known differential equations with cubic
and asymmetric nonlinearities as stated below. Both equations with positive b yield softening nonlinearity
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Fig. 14. Normalized nonlinear frequency responses for system B with free decoupler mount. (a) X c=F c. (b) X c=Fe. (c) X e=F c. (d) X e=Fe.

Key: , Xmax ¼ 1.0mm p–p; , Xmax ¼ 1.5mm p–p; , Xmax ¼ 2.0mm p–p; , Xmax ¼ 2.5mm p–p.
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under the harmonic excitation:

m €xþ c _xþ kxð1� bx2Þ ¼ F cos ot, (32)

m €xþ c _xþ kxð1� bjxjÞ ¼ F cos ot. (33)

Further, the backbone curves of Eqs. (32) and (33) are expressed via the method of iteration [14] and the
describing function analysis, respectively, as below, where X is the amplitude of x and on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3b
1�

o2

o2
n

� �s
, (34)

X ¼
3p
8b

1�
o2

o2
n

� �
. (35)

Both Eqs. (34) and (35) predict a well-known shape (dash–dotted line in Fig. 16). However, the resulting
backbone curves are quite different from those yielded by the nonlinear responses of systems A and B with
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Fig. 15. Nonlinear frequency responses Xe with inertia track mount: (a) system A and (b) system B (f c ¼ 0 and f e ¼ F e cos ot). Key:
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inertia track mount. Based on the comparison of Fig. 16 alone, we surmise that the classical nonlinear
differential equations such as Eqs. (32) and (33) cannot be readily applied to the quarter vehicle systems with
amplitude-sensitive isolators (such as inertia track mounts). Moreover, one should differentiate between the
amplitude-dependent K(X) term and the softening spring expression kð1� bx2Þ of Eq. (32); recall that x(t) is
time-varying displacement and X is the amplitude of x(t). For the sake of argument, write KðX Þ ¼ kð1� bX 2Þ.
The direct insertion of K(X) into a time-domain formulation (differential equation) would pose difficulty as
the formulation is valid only when the external force is purely sinusoidal. In contrast, the differential equation
with kð1� bx2Þ is valid for any force time history. Furthermore, x(t) could assume positive, negative or zero
values, while X is always positive and greater than zero.

System B with the free decoupler mount looks more like a linear time-invariant system, at least from the
frequency response perspective. This is a surprising conclusion since the amplitude sensitivity of both mounts
seems significant at the component level. In this particular design, the effect of high decoupler damping
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negates the amplitude sensitivity in the frequency domain. However, we expect a different result in time
domain since discontinuous nonlinearities associated with the flow switching process must be considered in
time domain [15]. This work will be reported soon.

In summary, the vehicle system with a real-life nonlinear device was analyzed given limited measured mount
properties in the form of Kðo;X Þ. The one-term harmonic balance method was employed to construct
nonlinear frequency responses since it is compatible with the experimental procedure used for dynamic
characterization of isolators. The fundamental nature of the governing nonlinear system with Kðo;X Þ and
associated computational issues have been clearly demonstrated. Our method could be extended to other
nonlinear isolation systems.
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